DCA Calculation with the VTX

Richard Petti StonyBrook University VTX Software Meeting 10/17/2008

Method

Calculate the DCA using a straight line approximation

- •What I showed last week was a bug and not really the DCA
- •Recently found out that PISA by default takes the vertex of the first particle in the oscar file as the event vertex

True DCA – Calculating with just the pythia oscar file

True DCA - Bottom/Charm Ratio

DCA – Ghits and McEvalList for track matching

Charm/Bottom Ratio - Ghits

DCA – Clusters and McEvalList track matching

Bottom/Charm Ratio - clusters

•Electrons from vertex

DCA Resolution

Expected Resolution

$$\sigma^{2}_{DCA} \approx \frac{\left(\sigma_{1}^{2} r_{2}^{2} + \sigma_{2}^{2} r_{1}^{2}\right)}{\left(r_{2} - r_{1}^{2}\right)^{2}} + \theta_{ms}^{2} \frac{r_{1}^{2}}{\sin^{2} \theta}$$

DCA Resolution

To Do List

- Use cgl tracks instead of stand alone tracking for track pattern recognition
 - Stand Alone seems to find many false tracks and is not optimized for tracking particles where the vertex of that particle is not known
- Work on a correction to the straight line approximation to take into account particle bend
- Currently still using the exact event vertex, but will soon run the code while smearing the event vertex
- Work on decomposition of total dca distribution to its individual components

Fits to DCA - Clusters

Decomposition

1

